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ABSTRACT

The recent JPEG2000 image coding standard includes a lossless coding mode based on reversible integer to integer
filter banks, which are constructed by inserting rounding operations into the filter bank lifting factorisation. The
baseline (Part 1) of the JPEG2000 standard supports a single reversible filter bank, the finite length input to
which is symmetrically extended to avoid difficulties at the boundaries. While designing support for arbitrary
filter banks for Part 2 of the standard, we discovered that reversibility is not always possible for even length
integer to integer filter banks combined with symmetric pre-extension.

Keywords: Lossless coding, JPEG2000, integer transform, wavelet transform, lifting, filter bank, reversible
transform

1. INTRODUCTION

The lossy coding mode of the recent JPEG2000 standard consists of the following main stages: a decorrelating
wavelet transform, quantisation of the transform coefficients, and entropy coding of the bit planes of the quantiser
indices. In addition to its role in improving rate-distortion performance, the wavelet transform plays a critical role
in enabling the resolution scalability properties of the JPEG2000 bitstream — it is therefore desirable that the
lossless coding mode also include a wavelet transform. This is enabled by the construction of reversible integer
to integer wavelet transforms, which are combined with bit plane entropy coding (quantisation is obviously
not appropriate) to form the lossless coding mode. The basic building blocks of these wavelet transforms are
two-channel filter banks.

2. TWO-CHANNEL FILTER BANKS

A two-channel filter bank1 consists of a pair of lowpass and highpass analysis filters (H0 and H1), and a pair of
lowpass and highpass synthesis filters (G0 and G1), as depicted in Figure 1. The output of the analysis stage
is obtained by splitting the input into two channels, convolving each channel with the corresponding filter, and
downsampling each channel by a factor of two. The process is reversed on synthesis, upsampling each channel
by a factor of two before convolution and summation of the the channels. (Following standard practice, we
denote signals and filters by their z-transforms, so that convolution is expressed as multiplication. A non-causal
finite impulse response filter has a z-transform which is a Laurent polynomial in z — that is, a polynomial in
both positive and negative powers of z.) Such a structure is a perfect reconstruction filter bank if the filters
are chosen so that the output of the synthesis stage is equal to the input to the analysis stage. The standard
Discrete Wavelet Transform (Mallat decomposition) is constructed by cascading such two-channel filter banks
on the lowpass channel, as depicted in Figure 2.

Direct implementation of a filter bank as illustrated in Figure 1 is inefficient, since half of the samples computed
by the analysis convolution are discarded by the downsampling operations, and similar inefficiencies exist on the
synthesis side. In the polyphase representation, the equivalent of filtering followed by downsampling (a similar
identity exists for upsampling followed by filtering) is obtained by summing the contributions from convolving
the even subsequence of the input with the even subsequence of the filter, and the odd subsequence of the input
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Figure 1. Direct form of a two-channel filter bank. On the analysis side, filtering is followed by downsampling on each
channel, while on the synthesis side, filtering is preceded by upsampling on each channel.
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Figure 2. Construction of a three-level wavelet transform from a two-channel filter bank.

with the odd subsequence of the filter1.2 In extending this representation to the entire filter bank (see Figure
3), it is convenient to define the polyphase vector form of input X(z) as the vector

X(z) =
[

X0(z)
X1(z)

]
,

having as its components the even and odd subsequences X0(z) and X1(z) of X(z), defined so that

X(z) = X0(z2) + z−1X1(z2).

The analysis and synthesis operations (see Figure 3) may be expressed as[
XL(z)
XH(z)

]
= Ha(z)

[
X0(z)
X1(z)

] [
X ′

0(z)
X ′

1(z)

]
= Gs(z)

[
X ′

L(z)
X ′

H(z)

]
by defining the analysis and synthesis polyphase matrices

Ha(z) =
[

Ha00(z) Ha01(z)
Ha10(z) Ha11(z)

]
Gs(z) =

[
Gs00(z) Gs01(z)
Gs10(z) Gs11(z)

]
.

These matrices have components consisting of the even and odd subsequences of the lowpass and highpass filters
of the analysis and synthesis stages respectively, defined such that

Hk(z) = Hak0(z
2) + zHak1(z

2) k ∈ {0, 1}
Gk(z) = Gs0k

(z2) + z−1Gs1k
(z2) k ∈ {0, 1}.

Within this representation, the perfect reconstruction condition is simply GsHa = I.



Note that we utilise the polyphase with advance form of polyphase decomposition, which, while differing from
the more common delay form used in the filter bank literature1,2 is compatible with the conventions established
in the JPEG2000 standard (a more detailed discussion of this issue is presented in a companion paper3), which
was based on the convention adopted in the original paper of Daubechies and Sweldens.4
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Figure 3. Polyphase form of a two-channel filter bank.

It is possible to show that any polyphase matrix may be factorised4 into the product of a diagonal matrix and
alternating upper and lower diagonal matrices, as in

Ha(z) =
[

1
K 0
0 K

] [
1 0

SNLS−1(z) 1

]
. . .

[
1 0

S1(z) 1

] [
1 S0(z)
0 1

]
,

where the Sk(z) are Laurent polynomials and K is some scalar. This factorisation corresponds to the lifting
structure illustrated in Figure 4, in which

Ha(z) =
[

1
K 0
0 K

] [
1 0

S1(z) 1

] [
1 S0(z)
0 1

]
and

Gs(z) =
[

1 −S0(z)
0 1

] [
1 0

−S1(z) 1

] [
K 0
0 1

K

]
.

Some examples of lifting factorisations for common filter banks are presented in Table 1. These factorisations
offer a number of advantages, including in place implementations and low computational complexity.4

3. INTEGER TRANSFORMS

Integer to integer filter banks5 may be constructed by inserting a rounding operation into each step of a lifting
implementation. Viewed as a transform on an input of infinite extent, it is clear from the flow diagram in Figure
5 that any choice of rounding operation R(·) preserves reversibility, since exactly the same branch is subtracted
at each step of the synthesis as was added at the corresponding step of the analysis. Note that, for reasons of
implementational efficiency, it is also important to use lifting factorisations for which all of the filter coefficients
are dyadic rationals (as is the case for all of the filter banks listed in Table 1) so that multiplications of samples
by filter coefficients may be implemented as integer multiplications followed by bit-shifts.
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Figure 4. Lifting factorisation structure of a two-channel filter bank.

Table 1. Lifting factorisations for Haar, 2-6, 5-3, and 6-2 filter banks. The 5-3 filter bank is the filter bank selected for
reversible coding in Part 1 of the JPEG2000 standard, and the 6-2 filter bank is the 2-6 filter bank with the analysis and
synthesis stages switched.

Haar 2-6 5-3 6-2
Number of steps 2 3 2 3
S0 updates channel Odd Odd Odd Even
S0(z) −z0 −z0 − 1

2z1 − 1
2z0 z0

S1(z) 1
2z0 1

2z0 1
4z0 + 1

4z−1 − 1
2z0

S2(z) − 1
4z1 + 1

4z−1 − 1
4z1 + 1

4z−1



+

+

−

−

+

S0(z)

X(z) ↓ 2

S1(z)

X0(z)
XL(z)

z ↓ 2
X1(z)

XH(z)

S0(z)

X′
0(z)

X′
L(z)

X′
1(z)

X′
H(z)

R(·)

R(·)

R(·)

R(·)

X′(z)

S1(z)

↑ 2

↑ 2 z−1

Figure 5. Lifting factorisation structure of a two-channel reversible filter bank.

4. SYMMETRIC EXTENSION

We have, thus far, only considered filter banks applied to inputs of infinite length — some form of input extension
policy is necessary to deal with finite length inputs. Periodic extension, while simple, imposes restrictions on
input lengths, and generates artifacts at signal boundaries. Symmetric extension of the input represents a more
effective solution.6 Different types of symmetric extension are possible since the point of symmetry may lie on a
sample (whole sample symmetry) or between samples (half-sample symmetry), as illustrated for the E

(1,1)
s and

E
(2,2)
s extensions in Figure 6 (notation follows that established in the paper6 by Brislawn rather than that of the

JPEG2000 standard).

0 1 2 3 4 0 1 2 3 4 5-1-2 0 1 2 3 4 5-1-2 6-3

x E
(1,1)
s x E

(2,2)
s x

Figure 6. A signal and a single period of its E
(1,1)
s and E

(2,2)
s extensions.

Symmetric filter banks consist either of odd-length low- and highpass filters, both of which are symmetric, or



even-length low- and highpass filters, one of which is symmetric and the other anti-symmetric1 — the former will
be referred to as a whole-sample symmetric (WS) filter bank, and the latter as a half-sample symmetric filter bank
(HS).3 When the input to a symmetric filter bank is symmetrically extended using the extension appropriate
to the analysis filter bank symmetries, the low- and highpass channels also have symmetries which allow the
(in-principle) infinite-length channels to be restricted to a single period, and then returned to infinite-length by
appropriate symmetric extension prior to reconstruction by the synthesis filter bank. A symmetric extension
filter bank is non-expansive if the number of samples retained on the lowpass and highpass channels equals the
number of samples on the input prior to symmetric extension. WS filter banks require an E

(1,1)
s input extension

(an extension with whole-sample symmetry at each end), and generate symmetric lowpass and highpass output
channels, while HS filter banks require an E

(2,2)
s input extension (an extension with half-sample symmetry at each

end), and generate lowpass and highpass output channels which are symmetric and anti-symmetric respectively.6

5. SYMMETRIC EXTENSION AND LIFTING

A symmetric extension WS filter bank requires symmetric lowpass and highpass channels in order to be invertible
and non-expansive. This is the same symmetry found on the even and odd channels of the polyphase decompo-
sition of a symmetrically extended input, so the required channel symmetry may be guaranteed by ensuring that
it is preserved by each lifting step of a lifting implementation. Since convolution of a symmetric channel with a
symmetric filter generates a symmetric result, this requirement is met by the standard lifting factorisations for
the widely used WS filter banks,3 which consist of appropriately centred symmetric lifting steps.

HS filter banks, in contrast, require an anti-symmetric highpass channel on the analysis output. Since the
polyphase decomposition does not generate these symmetries, the usual structure of a lifting factorisation for an
HS filter banks consists of a sequence of initialisation steps (asymmetric, or trivially symmetric such as the Haar
filter bank), which generate the required channel symmetries, followed by a sequence of appropriately centred
anti-symmetric lifting steps, which preserve these symmetries.3

6. SYMMETRIC EXTENSION INTEGER TRANSFORMS

As discussed above, perfect reconstruction of a symmetric extension filter bank is dependent on the symmetries of
the output channels, which allow the truncation operation at the end of the analysis filter bank to be reversed by
application of the appropriate symmetric extensions to the inputs of the synthesis filter bank. When constructing
integer transforms by adding rounding operations as discussed in Section 3, perfect reconstruction requires that
the rounding operations not break these symmetries.

WS filter banks require symmetric low and highpass channels, so that integer to integer versions are easily
constructed by insertion of any rounding procedure, since any such procedure preserves the symmetry of the
update branch to which it is applied. HS filter banks, in contrast, require an anti-symmetric highpass channel
— an inappropriate rounding operation may not preserve this symmetry on the update branch to which it is
applied.

The first restriction arising from this more complex structure is that the rounding operation applied to the
anti-symmetric lifting steps must be an odd function so that it does not destroy anti-symmetry. A second, and
more problematic, issue is the rounding procedure for the initial steps prior to the emergence of symmetry and
anti-symmetry — while appropriate choices are available for the Haar initialisation, some initialisations do not
admit any workable choice of rounding.

7. ROUNDING OF ANTI-SYMMETRIC LIFTING STEPS

In Figure 7, assume that step S(z) represents the first anti-symmetric step subsequent to the non-symmetric
initialisation which has generated symmetric even channel X0(z) and anti-symmetric odd channel X1(z). Since
U(z) has the appropriate anti-symmetry in the absence of the rounding operation R(·), updated odd channel
X1(z) + R(U(z)) is anti-symmetric if R(·) preserves the anti-symmetry of U(z), requiring that R(−x) = −R(x).



While the floor operation Rβ(x) = bx+βc from Part 1 of the JPEG2000 standard does not satisfy this constraint,
it is satisfied by a rounding procedure which takes the integer part of its argument

R′
β(x) =

{
bx + βc if x ≥ 0
dx− βe if x < 0 0 ≤ β < 1.

+

S(z)

R(·)

X1(z)

X0(z)

U(z) = S(z)X0(z)

R(U(z))

X1(z) + R(U(z))

Figure 7. A single lifting step in an integer transform.

8. ROUNDING OF INITIALISATION STEPS

The more serious difficulty is demonstrated for the 6-2 filter bank of Table 1, illustrated in Figure 8. Imposing
the constraint that the highpass channel be anti-symmetric at the end of the initialisation steps, we obtain

b + R

(
−a + b

2

)
= −

(
a + R

(
−a + b

2

))
∀a, b ∈ Z,

which implies
x

2
= R

(x

2

)
∀x ∈ Z,

which is not a valid rounding procedure. There is no scalar rounding operation which preserves the required
symmetry for this filter bank.
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+
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z0
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− 1
2
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2
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2

]

[b + R(−a+b
2

), d + R(− c+d
2

),

c + R(− c+d
2

), a + R(−a+b
2

)]

(Anti-symmetry broken by rounding R(·))

S1(z)=

↓ 2

z

[a, b, c, d, d, c, b]

(Symmetric)

Extend

Figure 8. Non-symmetric initialisation steps of the 6-2 filter bank. A single period of an in-principle infinite signal is
denoted by [. . .]. The rounding operation on step S0(z) is irrelevant, since the step maps integers to integers even in the
absence of rounding.



9. AN EXCEPTIONAL CLASS OF FILTER BANKS

As a result of an interesting coincidence, the well known 2-6 and 2-10 filter banks (as well as any others with
factorisations consisting of two Haar initialisation steps followed by a single anti-symmetric step) are reversible
with the usual floor rounding operation (this is probably a significant reason for the failure of reversibility
described above not having been previously observed). These filters consist of two Haar initialisation steps
followed by a single anti-symmetric step. While the correct symmetry and anti-symmetry is generated by the
Haar initialisation using floor-based rounding, the same rounding destroys anti-symmetry on the highpass channel
after the anti-symmetric step, as described above. However, since the Haar initialisation steps both consist of
single filter taps at z0, and they are followed by a single anti-symmetric odd-update step, the error resulting from
extension of the non-symmetric highpass channel has no effect — it is irrelevant to the first synthesis step since
it is an odd channel update, and has no effect on the Haar synthesis steps since they do not see the extended
part of the even or odd channels (see Figure 9).
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Figure 9. Reversible 2-6 filter bank. A single period of an in-principle infinite signal is denoted by [. . .]. The rounding
operation is R(x) = bxc. While synthesis does not correctly restore the full symmetric input, the original finite extent
part of the input is correctly reconstructed because the first synthesis step is computed from the even channel, which
is correct, and the subsequent steps are single taps at z0 and therefore do not transfer information from the incorrect
extension into the correct original part of the signal.

10. RANGE SPACE PRESERVING QUANTISATION

Since no scalar rounding operation suffices, we now examine a more general class of operations which, while
impractical, does, in principle, enable the construction of reversible non-expansive HS filter banks with symmetric



pre-extension. This discussion is most conveniently presented using a simple vector space representation in which
a fixed length input vector in RN is mapped to a single period of each of the even and odd channels after symmetric
extension and polyphase decomposition, and the action of filters is represented by linear operators. Consider
applying E

(2,2)
s pre-extension and the polyphase decomposition to input vector u ∈ RN . Retain a single period

of each of the even and odd channels, labelling them v0 and v1 respectively — these vectors are both in RN ,
and v1 is a mirror image of v0. Now, define the operator PHS : RN 7→ R2N which maps u to the block vector(

v0

v1

)
. Since the odd channel is a mirror image of the even channel, the range space (we label it RHS,0) of

this mapping is an N dimensional subspace of the 2N dimensional parent space R2N .

Within this representation, a lifting filter bank is expressed as SL−1 . . . S1S0PHS , where each lifting step is
defined as Sk = I + Uk. The structure of the Uk

Uk =
(

0 Fk

0 0

)
even update Uk =

(
0 0
Fk 0

)
odd update

depends on whether the step is an even or an odd update. Define RHS,1 as the N dimensional subspace of R2N

within which each vector has a symmetric upper component and an anti-symmetric lower component. When
the filter bank is HS, non-expansiveness and invertibility depend on the the range space of the entire filter bank
SL−1 . . . S1S0PHS having the symmetry properties necessary for being a subspace of RHS,1. These symmetry
properties emerge progressively as each of the initialisation lifting steps maps its input to a new range space. The
range space after the final initialisation step (that is, the last step before the anti-symmetric steps that preserve
the channel symmetries) is a subspace of RHS,1.

A reversible filter bank is constructed by replacing each step Sk with S′
k = I + QkUk, where Qk is a rounding

operation for step k. Since the required channel symmetries only emerge after the initialisation steps, simple
scalar rounding for these steps will, in general, alter the effective range space after each S′

k, so that their product
will no longer have a range space which is a subspace of RHS,1. (This problem does not arise in WS filter banks
since the required symmetry is present directly after the polyphase decomposition, and is preserved by each
symmetric lifting step — while the insertion of a scalar rounding does not preserve the specific range space of
the modified step, the range space remains a subspace of the appropriate symmetric parent space.) A sufficient
condition for the final symmetries to be preserved is that each rounding operation Qk not remove its operand
from the range space of UkSk−1 . . . S1S0PHS — in general this requires a vector rounding operation (i.e. Lattice
Vector Quantisation), such as

Qk(u) = arg min
v∈Z2N ,v∈ran(UkSk−1...S1S0PHS)

‖u− v‖ .

In addition to having greater computational requirements than scalar rounding, use of such an operation is
likely to result in a filter bank with poor performance, representing a poor approximation to the corresponding
irreversible filter bank, since the vector rounding operation quantises to the lattice which is the intersection of
the appropriate integer lattice and the relevant lifting step range space — this lattice may be much less dense
than the integer lattice, and therefore have a much greater rounding error.

11. CONCLUSIONS

There appears to be no practical choice of rounding rules which would guarantee reversibility for all HS integer
transform filter banks based on symmetric pre-extension. An alternative iterated extension approach,3 in which
extension is performed directly prior to convolution in each lifting step, has been included in Part 2 of the
JPEG2000 standard. This algorithm is equivalent to symmetric pre-extension for WS filter banks, but not for
HS filter banks.
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